

MANUAL
How to develop your own dApp on dApp Builder platform?

How to develop your own dApp ... 2

Step 1: Write your own Smart Contract 2

Step 2: Fill the dApp information .. 3

Step 3: Construct the dApp creation form 7

Step 4: Customize the dApp Creation JS 10

Step 5: Customize the dApp Interface 12

Step 6: Create a JS preview for your dApp 17

How to test your custom dApp 19

2

How to develop your own dApp

on dApp Builder platform?

To develop your own dApp (with your own smart contract and HTML

interface) and allow other users to create their own instances of your dApp, go

to this page and go through the 6 steps of Custom dApp creation.

Step 1: Write your own Smart Contract

In the beginning you need to write your Solidity smart contract. Our platform

supports two architectures for smart contracts:

1. 1 dApp = 1 smart contract

2. 1 smart contract for all dApps

1 dApp = 1 smart contract

In this case when a user creates an instance of your dApp, he deploys his own smart

contract with your Solidity code. If you prefer this dApp architecture, you need to write all

the common dApp logic in your smart contract and to make available to set values of

customizable parameters as constructor arguments.

Please look at this example - it’s Multisignature Wallet dApp based on this architecture.

1 smart contract for all dApps

In this case your smart contract will contain all the instances of your dApp. The user’s dApp

instances must be stored in the contract as mappings:

address => dapp[] ,

where address is the Ethereum address of a user, and dapp[] is an array of structures of

this user’s dApp instances.

Also you must create the getDappId(address creator, bytes32 dappName) method in your

contract. This method must return two values: the dApp instance id in the contract storage

and boolean TRUE if the dApp instance exists in the contract by creator’s address and dApp

instance name.

Please read our smart contract for Betting dApp as example for creating your own contract.

https://dappbuilder.io/builder/custom-dapp.php
https://github.com/DAPPBUILDER/dApp-Builder/blob/master/dApp%20Builder%20smart%20contracts/dapMultiSig2.sol
https://github.com/DAPPBUILDER/dApp-Builder/blob/master/dApp%20Builder%20smart%20contracts/dapBetting.sol

3

Step 2: Fill the dApp information

After creating your smart contract you need to fill some information about your dApp:

 dApp Name - the name of your decentralized application

 Description - the short description of your dApp

 Preview image - the preview image of your dApp

 dApp Type - the type of your dApp’s architecture, 1 dApp = 1 smart contract or 1

smart contract for all dApps

 ABI - application binary interface of your dApp in JSON format, you can get it in

Remix while deploying your contract

If you choose the type “1 dApp = 1 smart contract”, you will need to fill also this

information:

 Solidity Code - the code of your smart contract

 Compiled Contract Code - the compiled code of your contract, you can get it in

Remix

 Contract Name - the name of your smart contract, this information is needed for

dApp verification on Etherscan

 Compiler Version - the version of the compiler with which you created your

compiled code from your Solidity code in Remix

 Optimization - set “Yes” if you used optimization in Remix for compiling your

contract

 Types of constructor parameters - if your smart contract constructor method has

some parameters, you need to enter their types separated by commas, for example:

uint, address, string

If you choose the type “1 smart contract for all dApps”, you will need to deploy your

contract and to verify the contract code on Etherscan and after that fill this data:

● Main Ethereum Address - the address of your contract in the Main Ethereum

Network

● Rinkeby Address - the address of your contract in the Rinkeby Test Net

https://remix.ethereum.org/

4

5

6

7

Step 3: Construct the dApp creation form

On this step you need to create the form for the users of dApp Builder. By this

form they will create instances of your dApp on this page.

You can create the form by adding and customizing the form fields. For each

field you can set:

1. Index number - determines the position of the field on the form. The index number

of the first field must be 0, 1 for the second field, 2 for the third etc. Pay attention

that dApp Name already exists on the form, you need to add the other fields

2. Name - the name of property of the form object. When user submits the form, it

creates the JS object containing properties matching the form fields

3. Label

4. Description

5. Type - the type of the field: Text, ETH address, Number, Select or Collection

6. Required - is the field required or not

7. Default Value

8. Min Value - minimum value for the number field or minimal number of characters

for the text field

9. Max Value - maximum value for the number field or maximal number of characters

for the text field

https://dappbuilder.io/builder/new-dapp.php

8

If the form type is Number, you can also set the decimals number for the field’s values. For

the Select field you need to set the list of the possible values:

Collection is the field type for the set of values. For example, the field “Owners” in our

Multisignature wallet: user can add so many owners so he want. The collection fields also

can have Text, ETH Address, Number or Select type.

9

10

Step 4: Customize the dApp Creation JS

On this step you need to complete our JavaScript template by your own code for creating an

instance of your dApp in the blockchain after submitting the creation form.

 If you choose the “1 smart contract for all dApps” dApp type, you need to create an

Ethereum transaction for calling the method in your contract for adding a new dApp

instance to the contract storage.

 Otherwise, if you choose “1 dApp = 1 smart contract”, you just need to paste the

correct parameters in the contract creating construction. Please read our comments

in the JS template, they will help you to write your own code.

11

12

Step 5: Customize the dApp Interface

On this step you need to create an HTML interface for your dApp by adding your own HTML,

JS and CSS code into our template.

dApp interface on dApp Buiilder platform is a single page HTML5 application, that

communicates with the blockchain via Web3.js library, Your interface must find the user’s

dApp instance in the blockchain on the loading and to allow users to interact with the smart

contract.

13

14

15

16

17

Step 6: Create a JS preview for your dApp

On the last step of your dApp creating you need to create a JS preview for your dApp.

JS preview does not communicate with the blockchain, it just simulates the working of the

real dApp. The creation of preview is not necessary but it is strongly recommended, because

it allows users to try your dApp working before deploying it into the blockchain.

Please try our JS preview for multisignature wallet for example to understand the purpose

of the JS preview and it’s workflow.

You can test your JS preview in real time while developing it. Use the “Test parameters”

field to send the test data for your dApp into the simulator. This data must be in JSON

format. Also the data that you enter in this field will be shown in the marketplace when you

add your dapp there.

https://dappbuilder.io/builder/marketplace/dapp.php?id=2

18

19

How to test your custom dApp

After creating of your dApp you can test it on Custom dApps testing page. You can create an

instance of your new dApp and then use it in the desktop browser or on Android mobile

device.

What is necessary to test:

1. dApp creation form

2. JS preview

3. dApp creation script

4. Working with dApp via your HTML interface in desktop browser and on Android

device

5. Smart contract validation (only for “1 smart contract = 1 dApp” dApps)

6. Customizing the dApp interface

https://dappbuilder.io/builder/dapps-testing.php

20

If you need to modify your custom dApp, you can do it in the list of your

custom dApps.

https://dappbuilder.io/builder/custom-dapps.php
https://dappbuilder.io/builder/custom-dapps.php

